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Abstract

The pulsations of a gas-filled bubble in a sound field
are discussed with particular attention to the effect of
the viscosity of the external liquidy the irreversible con-
duction of heat by the gas within the bubbley and the scat-
tering of energy by the bubble. The expressions obtained
for the gas pressure within the bubble and the time rate
of change of bublle radius are used to determine the rate
at which gas diffuses in and out of a bubble of mean radius
R. A threshold f~> bubble growth, ¢alled the threshold for
gaseous=type cavitation, 18 defineé by the condition that
the net flow of gas across the surface of the bubble will
be zero. This average rate of gaseous diffusion can also
be used to determine in a stepwise fashion the mean change
gf bubblg radius with time. Transient effects are also

iscussed.
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FEEFACE

This memorandum represents a continuation
of studies on the phenomenon of cavitation.
These studies were initiated at this Laboratory
by Dr. F. G. Blake, Jr. It is hoped that sev-
eral additioral reports will be added to this
series. Thanks are especially expressed to
Profegsor F. V., Hunt, Director of the Acoustics
Research Laboratory, Harvard University, who
has guided much of this work.
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JOoT4TION

a = 8%

X
a, = gas solubility constant
aft o ﬁ

8

A = amplitude of dinciden: pressure wave
Y = vyector potential
b - 3
¢ = velocity of sound
cr, = welocity of sound for longitudinal wave
cp = gpecific heat at constant pressurse
Cy = gpecific heat of gas at constant volume

e(r,t) = gas concentration in liguid

D = ges diffusior constant

. - B
2

8o = gas tension

hn(x) = 1/ gi Hn+*(x) = spherical Bankel function
=" =

(@) =y 3z Inyglx)

k n%s%

K = heat conductivity

n = meles
id=

spherical Bessel function
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Notation fconttnued)

moles of gas
coshé - cosg
molecular welight
pressure
pressure term associated with viscosity
ges pressure within bubble

variational gas pressure within bubble
scattered pressure wave

complex amplitude of p!

8
average pressure within bubble = P, +-%f

hydrostetic pressure

Legendre polynomial

radial particle velocity of scattered wave
heat content

radial coordinate

radius of bubble

initial radius of bubble

universal gas constant

time

initial temperature of bubble and liquid
interval energy

volune

particle velocity vector

work
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TH2S
Rotation (continued)
Z = complex impedance presented by bubble to
incident sound wave = U + iV

v = ratio of specific hea.s for gas = ;f | K

— ' |
T i
P i}
| 2/DF P
@ = temperature \\ |
[ = space average of temperature
A = wavelength \ i
4 = viscosity [
p = density .
ot = surface tension :
¢ = Y2auwh
] = gcalar potential f'
W = angular frequency .j
e = resonant angular frequency of bubble v Ew

|

In general the subscripts "1" and "2" refer respectively to '

the regions internal and external to the bubble.
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Pulgations and Growth of

Gas-Filled Bubbles in Sound Fields

by
Murray D. Rosenberg

Acoustics Research Laboratoty
Harvard OUniversity, Cambridge, Massachusetts
| I
INTRODUCT ION

This report presents a theoretical discussion of the manner
in which gas-filled bubbles in liquids react to the incidence of
a sound wave and then grow as a result of a net inward 4iffusion
of gas. This process, referred to as rectified diffusion, re-
sults when more gas diffuses into the bubble during its half-
cycle of expansion than diffuses out of the bubble during its
half-aycle of contraction. The thecretical formulation of this
problem, namely the diffusiocn of gas across a2 moving boundary,
results in a nonlinear equation. As a first aporoximation, the
solution to the diffusion equation is obtained for a bubble of
constant radius. In determining the rate of flow of gas across
the surface of the bubble the bubble radius (and area) 1s then
allowed to vary in accordance with the pressure variations with-
in the bubble. This method had been first suggested by Harvey
[1-6)* who considered the steady-state diffusion of gas into a
bubble of fixed radius. Harvey assumed that the ligquid surround-
ing the bubble 1is nonviscous and the temperature within the bubble
constant. Thirs work was later extended by Blake [7=10] who con=
sidered the periodic steady-state diffusion of gas into a budbble of
fixed radius. Blake assumed that the temperature within the bubble

*References to articles included in the Ribliography are made
by numbers enclosed in brackets [ J.
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is constant and that all of the energy within a sound wave inci-
dent upon the bubble is used to cause pressure variations within
the bubble. Thus, previous work with regard to the concept of
rectified diffusicn had neglected the effect of the extinction
of energy by the bubble as a rasult of heat conduction within
1t, scattering by it, and the resistive forces due to the vis-
cosity of the li.quid. These effscts are discussed in this
report. In 2ddition, the transient sciution of vhe diffusion
process, a factor which has not been examined by other research-
ers, is discussed: In order to obtain ar expression that
describes the manner by wnich gas diffuses into the bubble,
relations will first be determined for the variations of tem-
perature within the bubble, and the pressure field external

and internal to the bubble.

II
TEMPERATTTRE VARIATIONRS WITHIF THE BUBBLE

A. Zhe Heat Conduection Bguation

Let us assume that a gas-filled bubbls is subject to a uni-
form pressure field such that the changes in pressure at internal
points are due to the fluctuations of its boundary. This assump-
tion holds true as long as the bubble’s diameter is much less
than the wavelength of the incident sound wave. During the
oscillations of the bubble, gas will diffuse inward and outward,
but the amount of gas in the bubble will be essentially constant
over a single cycle at practically all frequcnaies of interest
in this report. Within the bubble, the first lew of thermodynamics
is applicable to a small element of volume, v, subject to a pres-
sure, p. Thus,

L0 d (2-1)
Schneider [1l] has shown that the processes of evaporation and
condensatior are sufficiently rapid in comparison with the
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pulsatiorn rate of the bubble so that the pressure ol the vapor
within the bubble will be constant and determired solely by the
temperature of the iiquid. In general the pressure of the gas

within the bubble will far excaed the pressure of the vapor.
According to the perfect gas law,

Pg dv + vdpg = R* 40, , (2-2)

and assuming that tie only heat conduction proececss takes place
in the gas

*
A'Q = 3 [
49 - rve, . (23)
Hence, |
- 86 _ 4p
KlV291 Plcpl a 1 “s ° (2"‘-)
Iet us define
£y
a = <
and -
b = =K

2
a<o 30 30 dp
—d1 4+ 2 1 — —E -
3pl t¥sr 8135 ~PLag "9 (2=5)
or 2u
) 3u dp
2 " 4Tt 0 (2-6)

where ul = rQlc

The heat conduction equation external to the bubble is

a2y 3y
—-2oa23—g2= 0. (2=7)

====== = afa

* The single subscript, 1, will be used to denote the region
within the bubbleg the single subseript, 2, will be used to de-
note the region external to the bubble.
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The gas pressure within the bubble will be made up of an average

pressure tern Pl and a varistional rarst péo
Chap. III that we can write

we
y = 7y

and the coefficient Pé may be complex.
We shall also show that

P, =Po+iﬁ¢.

B. B8te -State 8 tio

We shall see in

The steady-state solution of the two equations, (2-6) and

(2=7), can be obtained by writing that
wt

u=vir)e .
Then
| a2y
—3% - gwa v, - 1wP'byr = 0 (2-8)
dra 11 g1
and
e 0 (2-9)
= fWa." = . -
er 2' 2

4s solutions of these equations, let us {ry

v, = Alsinh QT + B, cosh q;r = ¢ (2=10)
and

QT =qT

AP A2 e + 32 e = Cye (2=11)

Then, since v,—0 as r—0, and v, is finite as r—m,
L

v, = A;sinh (14)8;r - & Pg T (2-12)

and v a2 \Q
-\J.".Ljdgr' ‘n
v, = 32 e (2=13)

?
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where

The boundary conditions at the surface of the bubble based
upon the continuity of temperatiire and heat flux are

39 30
r=R wR r=R r=R

or

u
ull - uQ] and K1 3;(—;)]r = Ka g%(;;)] (2=15)
=] r=R =R r=R

By satisfying these boundary conditions we find that the tempera-
ture internal to the bubble is given by the expression

a
mﬁl(ela ) =

£(1+t)§2§+1 sinh(1+t)81r

1+1);§% 8,Rcosh(1+1)8,R+A R sinh(1+i)8 R‘+(1w§l)sinh(l+i)5 1R
. Pé gt (2=16)
This solution may be written as
%(Qla IO) = [% w (ulf+ iv]‘_)wl} g i , (2=17)
where

U, ™ sinbalr zosalr sinh s cos g + coshSlr sinSlr cosh g sin
£
2

i ks

vy = coshslr,sinsl sinh g cos = sinh&lr cosslr cosh g sin

i}

il =

!

1

«
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at = dla’(2-g+ 2§ sinh g + a'g) + Ex(sinh ¢ + sing) + 2=l

1
m' = cosh # = cos ¢
g = V2a1w R
l K

S
g K2

a—
. -2
a p//;l

V0 o= dg[a'(ﬁw sing - 1) = §i§£.éa;_§$§_é3

wh o= (1l-g+ g# sinh ¢ + a'g)3+ (1-g* 5% sing)?

K
The ratio, g = gi ; for various liquids is as follows (Kl =

- 2
0.055x10 > cal/sec cm®C for air):

Iagble 1
K
Liguid Eé (See Smith [12])

benzene 0.14
ksroserne 0.15
castor oil 0,13
olive oil 0.14
water 0.04
carbon tetrachloride 0.20
acetone 0.13

When r = R, u, = n', and v_= 0.

o Then if g << 1, the tem-
perature at the surface of a bubble (r = R) is 91 - To:v 0.
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A plot of uiml and vi as functions of € when r = R is presented
in Pig. 1 and Table 2 for a given value of g and a'.

Zable 2

g uf-1 \21

0.1 - 0,0721073 -0.16z10"3

1.0 - 2,00x10°3 -2,13x1073

5,0 =10,40x103 ~2,55%1073
10,0 -11,80x103 ~1,37210™%
100.0 ~13,00x10°3 -0.14x10°3
' (g = 0,20, a' =4/a,/a, = 15)

Pigure 1 represents the extreme case of carbon tetrachloride
whereir the maximum change in temperature at the surface of the
bubble would be expected. It is apparent that even if the peak
pressure within the gas 1s as great as 10 atmospheres, the sur-
face temperature will differ from the liquid temperature by 10.6°C
(b;/a; = =0.813x107* for air).

By means of these curves and the values of u, and v, one can
determine the temperature at various points within the bubble.
For convenience one can let 81r =n % where n is any positive

fraction, 0 S n £ 1, such that R/r = 1/n,
The average value of © with respect to r will be

T = ;% ‘i r2¢ dr. (2-18)

By using the integral

H

K 2 3
>3 i T % sinh sr dr = %ﬁ cosh sR - ;§§3 sinh sR, (2-19)

e ——
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we cbtain the expression

ay -
gi(o - T,) = (ay + 18,)R) WP (2-20)

whare

a, = 531{33'(cosh g -cos £) + % a' da(cosh % + cos g)

+ sinh gl6a'(§ a'41-g)4-sinslda’ (£ a'+14g)+1]

»je

(3£ a141-g)%+ £ a'2)(cosh #- coss) + g2#(cosh £+ cos ),

+ 2g(da't+l-g)sinh ¢ +2g(l-g)sin ﬁ} -1,

B = j% {F(g a' + l)(g a' + lag) § + g a'2J(cos g- cos £)

-gﬁ(g a' 4+ 1)(cosh ¢ + cos £)
2
+12g(4 a'+1) = (8- a7+ da' + 1fsinn g

2
+[2g(4 at41) - (& a'+ gat + 1)Isin g

é[ﬁ(g a'+1-=g)2 + g a'zl(cosh g=cos d)+323(cosh g + cosg)
+ 28(da'*1-g) sinh g + 2g(1-g)sind

A plot of ay and Bl is presented in Fig., 2 and Table 3, on the
opposite page.

It i3 apparent from Pig. 2 that #or ¢ < 3.0 the pulsations of
a bubble will be essentially isother.ily for g > 30.0 the pulsa=-
tions of a bubble will be essentially adiabatic. In the transi-
tion region losses will occur as a result of the irreversible
conduction of heat. We shall see later that the resonant radius
of a bubble usually lies in the vicinity of this transition
region.
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Table 3
g = 0.0a - g = 0,14 g = 0,20
,,?f =712°? a' = 14,0 Va' = 15,0
A Al % L o LR
x1073 x10 2103 x10™3 x10™3 x10°3
Ool 2353 = loo 2006 0 2651 0
150 - 202 = 3307 - 3'31 = 3‘»98 - 308 - 35:3
5.0 [-391.8 -354.,0 =395.5 =353,0 -397.3 =352.5
10,0 {=701.0 ~239.4 =702.9 -243,1 =703.4 =238,0
10000 "97001 - 2903 "97033 - 29.1 -9709‘ - 2902
The perfect gas law for the bubble is
(Py+ b)) -§ ~R3 = m BT, (2-21)
Now let R vary with pée Then
_d§=‘ x 45-'-1]——%—' (2-22)
dpg -gwR dpg 3(Py pg)
But by differentiating Eq. (2-20),
= b
]
, E%T = ;l (aq+ 1By)
g 1
and
dp!
'37—1{1_—13&7, (2=23)

b
mR*
- [ Joy ]

The quantities

o R I
a; Py
y - B
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Beo -o,

Thus Bgq., (2.23) becomes
d

= 1 F
Qg.gﬂ;}ﬁ Wf_p?’ {2-2a)

and

where

c = (Y'l)al +ty
B = =(y=1)8,

This equation expresses the relation between the change of
the radius of the bubble and the pressure variations within the
gas-filled bubble. This equation will be used later to study
the pressure field external to the bubble.

C. ITransient Solution

The complete solution (transient and steady-state terms) to
the abcve problem can be obtained by means of Laplace transforms
(see Carslaw and Jaeger [13], p. 288). We have seen that the
temperature at the surface of a bubble will, in most cases, not
differ greatly from the temperature of the surrounding liquid.
Therefore, the importance of the transient term can be obtained
from an analysis that assumes that the fluid reservoir in contact
with the bubble is large enocugh and has a sufficiently high heat
conductivity such that its temperature is a constant value Toe
At time t = 0, the temperature within the bubble is To, and
the pressure within the bubble is P°+ %f: In addition, we shall
momentarily assume that the radiue of the bubble is constant (see
Apprendix I).

Let us define the Laplace transform of 9, namely,

P = aﬁ e~% o(r,t)at (2-25)

4
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Equation (2=5) beccmes

2 28, ®
& .21 ) 20) = -st dp w26
o+ & - a 80 +a,0 (t=0)=b, J e R 4t = o (2-26)

dr g dt
or
2 s
a“(28,) dp
—d . a.erd 20) - =st g -

The initial and boundary conditions can then be written as
O(t-o)'- To

8(r,s) finite as r—so
(R, s) = Tg
| s

But since p! = Pg - Py,

g
dp, dp!
st =8t 2 o o
ie '&E‘dt'ie 3t - SPg-
[»]

Thus Eq. (2-27) becomes

L (5 yen. o6
dra(“l)'als“l* alrro-blrsﬁ"g = 0 (2-28)

As a solution of this equation let us try the substitution
r@l = Asinh qr + B cosh qr + Cr

It follows that

and

By virtue of the boundary conditions we obtain

TN '}
-
"

PUE . P
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B=0

arnd b
A=—d B R
8 '8 sinh\/als R

Thus,

-~ b, _[R sinhva,s r | ?
e--lp;r 1 -1} + -2 (2-29)
21 8| » sinhva;s K ] °

The inverse transform of this equation is obtained by means of
the inversion theorenm

BURA A
2(t) = i J e r’(_i) da - (2=30)
im
The ternm E; is o)

o

"\
i = =3
pg -] iw

By choosing the proper contour im the complex plane and by apply-
ing the theory of residues, it follows that

e L Vi r _1]
o g r sinh VIva; R
~n2p® | (2-31)

I
bl 1

The average valus of 6 with respect to r is

R
§ == [ r% ar,

and the integrals




TH2Y =13=-

gg ,? r2 % sinh qr dr = ék cosh qR - 25%3 sinh qR

()
33 -z r2 g sin nn'ﬁ dr = ;L(-l)n+l . (2-32)
R ne

In the majority of cases the time constant -l—— will be at
most of the order of magnitude of 10 ~4 seconds, and the transient
term can be neglected.

Since
—3—— coth 4Ioa; R = —=——— [sinnyEa, R - sinvEra;
VEaiR 1 V&ml 1
(2=33)
= i(sinhV2sa, R + sinv/2ia, R)],
we can write that
a
5-% 8-1,) = (aj* 13{)P} o 1ot (2-34)

where

- sinhg = g
& % coshd = cosg ~ L

s + 3 b
Bi '.% cos ~ CO& + 52
And as we would expect from Eq. (2-20), the terms

CL1~—-~> Gi

a8 g‘-—’Oo
Bl
1

P
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III
THE FRESSTRE FIELD WITHIN THE BUEBLE
A. Exact Analygis
The acoustical field external and internal to a spherical
gas bubble can be determined by an analysis similar to one devel-

oped by EBpstein [14]). The smzall signal wave equation for a vis-
cous liquid is

p i—:—} +7 2V & - £V Freped VO = 0 (3-1)

where
» (4Dy#
By writing in terms of a scalar and vector potential
v=Vi + Vx73, (3-2)
and assuming periodic time dependence, it follows that

v + %2 8= 0, VA +EL -0, (3-3)

where
2 4 . 2ral 4 A 4 plba-1 2, i £
k€ = 0oy +3 155177, K% om0
Consider the case of a purely longitudinal primary wave,
4 sinut(Im Aeﬁnt), that is ineident upon a gas bubble in a vis-
cous liquid. If the crigin of a spherical coordinate system is
taken at the center of the bubble with the polar azis in the
direction of the incident wave, axial symmetry will require that
Ar- Ag- 0. Botih § and Aé can be expanded into the following
seriess

& = glkreosé _

n )
5 i (2n+l)jn(k2r,Pn(coso)

n=o

‘14-

]
A
4
of
:"
-

| L




TH25 =1 5=

& =S in(2n+l)B hn(k )P, (c0s0)
n=po

by = S 1“(2n+1)cn2hn(l':2r>§5 P,(c0s0)

T2 n=o

& - "4T L¢n+L)B 3nlk, r)Pp(cos0)
23

n=o0

where the subseript "i" refers to the incident wavey the subseript
np" pefers to the reflected wavey the nuamber "2" refers to the ex-
terior of the bubblog thc zumber "1" refers to the interior of

the bubbley and

Jn(x) = 4/ g% Jn+§(x) = gpherical Bessel function

h, (x) = 4 é% Hn+§(x) = spherical Hankel function
Pn(y) = Legendre polyncmial.

Let kR = c,, EZR = d, and k,R = ¢,, Then for the liquids and
bubble sizes with which we shall be concerned, c% K1, c§‘<<l,

- e
ka'zc andklzc °

L. Ll
I

The boundary conditions are such that the components of ¥ as
well as the stresses must be continuous at the surface of the
bubble with due allowance for capillary forces. 7ZThe expansions

tor §,(x) and hn(z) ares

-4 4
j(x)-m 1" - + L_ o000 n209
l 3ooa(zn+l> 2(2n+3) 20‘-(211+3)(2n*5) (3_5’)
2 4
(x) = (~1)% 1.3...(20¢1)x" 2" L|1 + —E 4 . + e
Jan-1() 3 x [ 2(2n-1) 2.4(2n-1)(2n-3)

n>.

L)
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4
+ 'ET"OCao]

o

1_1(1) - % (1 =

]
°

n

and

Ba(x) = 4plx) = 10-1% (=)

For the first term of the series, that is, n = 0, one can show

by using these expansions for jn(x) and h (x) that

Efffz 2 _ .2
o Bol ey = &3

2 Zop & . a2
(a2 - o)1 = + B, 13 YT=4d

1 2
where p
P a1 . Lrg=if =
T-1-84), ¢ pf
ané& it has been assumed that
Elimination of Bo between these two equations leads to
2
B. z=‘=-J‘(l==-“’--)¢':2 -

(o] £ 3 2°°1

1 d2
Honce the first term of the series for 51 is

P2°El
B §, (k,r)™ - .
0 %0, ' 71 Pow®R*
1% 2 2w 3 4y
pscy Y = + i
1 Ll 3 3
But
2 TP

91°L1“” a - 1ip

and

(3-6)

(3-7)

(3-8)

(3-9)

(3=-10)

Pl

ey —
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Thus,
p'

g

The coefficient Bl

=17
v P
~ P 212 = Ehe
YPaY  pPR? L gy
Tip - T3 tiT

(3-11)

can be determined by taking the boundary

condition for n=l,1 subjeet to the same approximations used

in obtaining Bo s

for 61 is

One can easily show that

1
B, . S 7%
11¢= c 2 °
1 7 - d2
The additional term due to Bl
1

7 +d
e 5

Cy, 9 d2

2 2

Denote the correction to pé due to this additional term as

il
pge Then

"

2
ra w R wR
p z<-§h 2 peCq i £ ><Q.
g e L2 2
jr=n L

(3-12)

in the series expansion

(3-13)

Thus if kR<L1, the pressure distribution over the surface of

the bubble will be uniform.

For bubbles whose sige becomes

comparable to a waveleagth, the ad itional terms of the series
cannot be neglected.

B, Approxi A 3

Equation (3-11) for p'! can be obtained in far more simple
manner [15] if one makes the additional assumption that the terms

pertaining to viscosity in the wave esquation are negligible.

Then

the scalar potentisl for spherically symmetric pulsations in the
liquid is simply

5"50 b

ei(wt = kr)

(3=14)
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Thus

P = p 23 (3-15)
and

qq = - 52 (3-15)
where

ps = pressure in radially scattered sound wave,

Qg ~ partiecle velncity in radially scattered
sound wave.

Up to this point the effect of the viscosity of the fluid
has been neglected. As a result of viscosity an additional
pressure cterm, Py will appear. The approximate value of Pe can
be obtained in the following manner. The pressure tensor in a
liquid of viscosity,u, is, for the case of radial symmetry,

3q
Py = ??} 2(r2q )= 2u—3% . (3-16)

The pulsation of the bubble will be in accordance with the thermo-
dynamic equation (2-24),

¥ .3 4p e . o=p P
V R Y i’
where it has been assumed that

At the surface of the bubble the continuity of pressure and
velocity requires that

- int 28
Pit Pg = de™ " ¢ ps} * pf> * R
r=R r=R

or
TR iot \ 2g dR
& Fg = 3t (‘ em 4 pgt p:) - 32 at (3-17)

\ =R

and

PR
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£ - qs> (3-18)
r=R

The average value, P,, with respect to time, 1s simply (Po+ %$>,
where R is a mean value. Thus we can obtain the expression for
pé, namely,

3y P, /a=18
G TR Rl T 4 ¢*%.3-19)
N J"L&_q,i‘w“.piﬁd_a__i_“’
—a-18 ~ 1+x2R2 ¢ (14:%R?)

which is the same as Eq. (3-11) for kR<< 1,

C. Izpedanece of Bubble and Resonanece

In a similar manner we can determine the impedance presented
by the bubble tc a sound wave, namely,

4 glwt
“- Eqs’r=R

=7 + 4V (3-20)
where
U= 9.5,._9.9!33 + él.fiﬁ.__
v« “RR__ . L
1#%%R%  _R(a®+_2%)
3YPya-£2(a?482)

The termsin U result, respectively, from (1) the =~ork accomplished
by the incident pressure in overcoming resistive forcss due to the
viscosity of the liquidy (2) the energy scattered by the bubbleg
(3) the energy lost as a result of the irreversible conduction

of heat within the bubble. The terms in V respectively result
from (1) the inertial reaction upon the bubble of the entrained
fluid that moves with the surface of the bubbley (2) the compres-
8ibility of the gas within the bubble,

A plot of the terms U and V as funections of £ at a frequency
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of 60 kc/s is presented in Fig., 3 and Table 4,below. ZTwn
liquids have been considered, namely, water and olive oil. The
bubble 1s assumed to be air-filled.

Zable 4

¥ater Olive Oil

g' R{cm) 5] v 4] . v

0.02  1x1077| 400.0 -8.52x10%| 336000  -4.31x10

0.1 5.1x107°| 790.5 -4,59x107| 66403.2 -2.94x10°

5.1x10°% | 79,3 -1.86x10%| 6640.3 -1.71x10%

5  2,5x1073 | 64,2 -2,68x103| 1374.7 =2.69x103
10 5,110 | 50.4 - 85.7 704.6 - 216.9

100 5.1%x10°2| 2530 +1.89x10*| 2406  +1.73x104

6

The steady-state response (or impedance) of the bubble in-
dicates to some extent the appearance of its transient pulsa-
tions. The impedance consists of resistive, inertial, and
stiffness terms. Let us assume that these terms, to a first
approximation, are constant. Xor small values of R, the reac-
tance will be negative =- that is, the bubble will be stiffness-
controlled. Under these conditions one can show [16] that it
is possible for an underdamped or oscillatory condition to
exist in “non-viscous® liquids wherein a high-=frequency transient
of rather large magnitude will be superimposed on the steady-state
pulsations if the applied signal has the proper phase. In other
words, under special conditions the transient pul: tions of a
bubble could be important in affecting the initial diffusion of
gas inward and outward. We shall not, howsver, discuss this
problem in this memo:andum.

Bquation (3-19) can now be written

3yR; Aa=13) : .
Py =y — 4 o™ s P oM (3-21)
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Resonant pulsations of the bubble will occur when V = 0, or
2
2 L1
wy = (3=22)
T l=(w§/c2)32 ’
where 2 ?;,
1 4 22“(; - QiﬁnZQ) ')!'
RPo 3y 3¢P
w2 = 2 w2 a A 0 £?
1 [») R2 } s} ..2 p 1'.'
|

Q ¥ S
a

Similarly, we can define a resonant bubble size R = Rr, when

w =w_ . Thus,
r we
2041200 L (3=23)
14k"R w

and the displacement of the surface of a bubbdle is, respectively,

3

2 1
gs) o *"-"(P for R <R,
r= 3 +
o R
“’(‘f‘ i =% )
%) = Lot £ R = R
r=R wU or r
wt -
A S
5s> R- 22, for R >> Br
re
_ % 1 + kanz
Similarly,
32+ 4
' - s f <<
Pg Iﬁq_E;T_ﬁ- or R Rr
»=R
\ 3Pt §i/e-18 + §5)/a-15 £ R = R
p = or =
g iR T
§s\I=R
3y(P_+ &)

P =
g iR
3S):‘!-R
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The strain set up at the surface of the bubble is Sé)r--g
This strain will be very large. The corresponding ' )
pressure will not be very large. However, if any material is
near or in contact with the bubble, it may be mechanically
damaged as a result of repeated deformations associated with
the large strains. Some materials will effectively change
the character of the pulsations of the bubble such that the
above analysis will not hold true. And, finally, the effects
of mumerous bukbles are extremely complicated and can only be
estimated on the basis of the above analysis.

Iv’
THE RECTIFIED DIFFUSION OF GAS

A. Complete Solution to the Diffusion Eguation

The diffusion of gas into a bubble will be in accordance
with the diffusion equation

Vze = ﬁ -g% o (‘-"1)
For a mov;ng boundary-value problem this equation is nonlinear

(see Appendix I). We shall assume that the radius of the bub-
ble is momentarily constant so that an exact solution to this

- equation can be obtained. This assumption means that the dif-

fusion process occurs as a result of variations of the gas
pressure within the bubble. These variations in presgsure result
from the continuity of pressure across the surface of the bubble.
We shall later make an approximatiom to account for the move-
meats of the bubble‘’s surface,

During the positive helf-cycle gas will diffuse into the
liquid wnich is undersaturated with respect to the bubble; during
the negative half~cycle gas will diffuse intec the bubble which
is undersaturated with respect to the liquid. But the surface
area 0f the bubble will be greater during the negative half-
cycle such that there will be a net sonically induced diffusion

RIS

T ]
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e e P e e e
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of gas into the bubble.
the rate at which gas dissolves as a result of the internal ex-
cess pressure due to surface tension, the bubble will grow.
This process, called "rectified dirffusion,™ can be studied by
means of the diffusion equation.

system the diffusion equation is

where

.2
ar?

u

Sy, % gg

= IE
2o

?he bcundary and initial conditions are

or

where

c(r,t) —— 8,8, a3 r—o

c(Ryt) = a,p

c(ry0) =a

080

g

u(r,t)——vrgo as I——» ®

u(R,t)

......

+ 8 a,(py(t=0)=g,);

If the rate of this net influzx exceeds

In spherical coordinates for a spherically symmstrie

(4~2)

(a=3)

- Bpg = B(Pi+ af4 sin(wt+X)) = Wl(t)

u(r;0) = rg, + R(P;~g,) + RajA sinX' = wy(r)

a?,,:,_..ﬁx.&_x
Le - g

a8, =
1 ;ﬁ2 +y2

X?
h = tan

n

0
[ ol

Qb i3

{ = tan

h+ ¢

8

(4=4)
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Tha complete solution of the diffusion equation in the infin- 1
ite region bounded by the internal sphere of radius R 1s readily .
obtainable by the use of Pourier integrals and Laplace transforms. ‘ :
A complete discussion of these techniques is given in the text- ,
books of Carslaw and Jaeger [13] and Churchill [17]. Thes solu- 'ié -
|

tion is {see Carslaw and Jaeger [13], p. 209)

{ - (r=p)? S_._L__)_r* 1
T, (2 e ADt

1 4Dt ;;1 :
us= ) 2 i.., s < _‘ (l ’
(4=5) A“
+ -2 T"l/t .(._22>e=y2dy° NE
A 4-R \ 4Dy? ‘\
2/3'1'-.’ e
let N = g 2 = (7\=1“>n g and 2zt = (r‘*}\- DQR)TIO Then9 ; i i
e :T’ L | 2 N Z 22 i
u = Wy (% + 1) o7% - ¥, (% -r+zR)e"% d o
n a'n Tt ‘
mR)ﬂ "/-— I‘FR)” . . i
(a<6) ‘!

. 2
/v (r-3)n

z
where the integration parameter is now denoted by z. Suppose that i.
the boundary conditions are those of Eq. (4-4). Then the solution L
of the diffusion equation is

l
/ 2 2 LR
. 2 '1@"'&3)_&) et 4z | i
‘
l

u(r,t) = rg + R(P,=g )+ RajAsizX’ erf LB

2/Dt
B V25

‘A e D sin(wt + X'-(r-R)¥ 25)

+ Ral

\

=th
+ 2Ra’A cosX! =2 j? 35—=——~ sinz(r-R)dz
+D z
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- 7 & . _ﬂ thz O an - -
2RajA sinX = D2 7 sinzls R)de. (a-?)
$

Thus, for t2> 0,

) rald o %—z)

T r=R

a RalAsinX ']
=2/P.- g % alh sin(wt+X') = —
R i o 1 o~

- a a4 Vs [sin(wt+X?)+cos(wt+X )]

—th

' L ..,_._s___
+ 2a°alA cosX! b~ f W2 . z dz
- 2a,8]A sinX’ o J “% g d2 (4=8)
o b z
The term
®: 2
2n_=Dtz
B, - f Lt . gy £ >0 (4-9)
we + z“ )
o) D2

has, to this author's knowledge, not previously been evaluated in
closed form. The evaluation will therefore be given in consider-
able detaili. Quite often, integrals of the form

2 [ ]
7 g(z)e2% a4z

°

cannot be solved by Cauchy’s method of contour integration in
the complex plane. The most commeon example 1s the error function
of infinity, namely, the definite integral
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Other technlques in the real plane must be used to determine
these integrals: The integral Rn car. be written:

—im b

=] ES PPN DLy G (4-10) \ .
?‘n m_% + gt pR g¢f © T !
D k,'
But, |
@ _peg? ' |
1 - L—D—Ef.-— dz = D—m e—za —A - 1 dz \
° w2, oA 2lw p2-int it N
D2 L 1
|
M,
/Dt .

(o)

. f
= R ./ sin{wtg) s

A f(l | ,
- g% V-ZD (% - S(wt))coswt-(% -« Clwt))sinnwt], (a=11)

where S(wt) and C(wt) are the Fresnel integrals defined by

t
SCwt) = f sinx 4y
| Vo

w
C(wt> = — dx.
b 2

Ak

:

C

<

Thus,
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R, =3/ 88 [(d - sut))sinwt + (3 - Clut))cospt]
1 2 w 2 2
(4=12)
Similar techniques can be used to evaluate mauy integrals of
the forms

o

2
Jfﬁ(z)eEaz dz.
| ,

The associated trigomometric forms of these integrals may also
be evaluated by means of integration in the complex plane.

B. Rectified Diffusion

Since the rate at which gas flows into a bubble in moles/sec
is

o= amR2D(§: (4-13)
r=R
we can now determine the average value of m over one cycle. How-

ever, let us now introduce the variation R(t).

The radius R(t) of the bubble can be expanded in a Taylor's
series about its mearn or initial value, R,. This series is

R~=R& + Qéi} Py * sece

§
4] dpg
0
where
= + pi
Pg = Py * Py
oY
A = pi,
Dg Pg

Substitution of Eqs. (2-24) and (3=21) leads to the series

A 1 U
R=R <; + sin(wt + tzan ) 4 ease
o) 7

wR5V62+ v2 >
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= Ro(l + alA sin(wt + h) 4....) (4-14)
Thern
—_ a,ad
m= -4mRaD [:i“’ g5t —%—l{con{- -sind )(1+2Ro 1/—2“65 )A2]
' (4-15)
where 4 = taa“lﬁ/a,
since it can be shown graphically that
S(wt)sinut ~ Clut)coswt ~ Clwt)eoapt simet
o Clwt) sinut = Clwt)eoswt sinlut
~ Clwt)sindut 48 (wt)coswt
=S (wt)ecoswt simwt
~8(wt)coswy sinlut ~ S(wt)sindwt
=0 : (4=16)
and
S(wt)sinut ~ 0.25
(4=17)

C(wt)sin®wt =~ 0,25

The terms in Eq. (4-16) represent the effect of the transient

terms in the solution of the diffusion equation. Even if the
graphical averaging of these terms is taken over the first few
cycles of the applied sound signal, the average of these terms will
he approximately zero. Thus the transient part of the solution

has a negligible effect upon the average rate at which gas moles
diffuse across the surface of the bubble.

In order to have (on the average) no moles of gas entering
or leaving the bubble, the sound amplitude, A, must be large
enough such that m = 0. Let us denote the sound amplitude that
satisfles this condition as A(D, the threshold for the growth of
gas-filled bubbles (also referred to as the threshold for gaseous-
type cavitetion). Then,

~——

e
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g + ST
2(Po g°+ Rg)

Ay = »
-ajaj{cost -sind){1+2R_, /2 )
2(P_+ £& - g ) w2R2(V2+ V2) #p2+ 32
o o 0 0
=2
3v(P, + §ﬁ7(cos¢ =sind)(142R ./ =% )

(4=18)

4 plot of A‘D as a function of ¢ 1s presented in Fig. 4 and
Table 5. The frequency chosen is 60 ke/s, and two ligquids,
water and olive oil, have been considered. The bubble is assumed
to be air-tfilled.

Pable §
Yater Olive Ol
g R(em) A w(Atmospheres) A m(Atmospheres)
0.02 12105 14,8 4.7
0.1  5.1x1070 1.9 0.64
1 5,1x10"4 0.14 0.06
5 2.5%x1073 0.02 0.01
10 5,1x10"3 0.008 0.002
h 0o 5,1%x10"° 0.13 0.05

C. Stepwise Growth of Bubble

For a gas bubble nucleus of radius R,, much smaller than
resonant size, a sound amplitude A greater than Acnwill be re-
quired for 1ts growtr. As the bubble bhecomes larger the sound
smplitude required for its growth (A<D+) hecomes less and less.
If the initial sound amplitude, 4 +, is maintained constant,
the rate of growth of the bubble will be more and more rapid
as the bubble increases in size. However, because of the
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additional losses that occur whan a bubble approaches its
resonant size, the rate of growth will be retarded for the
same Kco+9 and the pulsations of the bubble will become very
complex. For bubbles greater than resonant size, the rate

of growth will decrease with increasing bubble radius. Hence,
we can see qualitatively that the mean radius of the bubble
should follow an S-curve with time for a constant value of
Agp*. RNaturally, this discussion assumes that the bubdble
remains in the sound field at all times and is not subject to
any foreces. In a free progressive~wave gsystem this assump-
tion will often hold true. In a standing-wave gsystem Bjerknes
forces will keep a bubble below resonant size at a pressure
antinode and a bubble above resonant szize at a pressure node.
Because of these complications the growth curve of a gas-
filled bubble can be bast obtained by means of numerical
integration of the nonlinear equations that describe the
greowth of the bubble. These data have not been presented in
this memorandom, where the prineip points of interest have
been (1) the minimum threshold for growth by means of recti-
fied dirffusion, and (2) the characteristics of the pulsations
of bubbles of various sizas.
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AFPENDIX T

The Nonlinearity of Parabolic Equations

Subject to Moving Boundary Conditions

In this technical memorandum it is necessary to solve
paratolic equations such as the heat conduction equation and
the diffusion equation. For these equations the values of

the temperature and gas concentration at the moving sur
of the bubble can be taken as the boundary conditions.

farm

-3

a

parabolic equation subject to conditions at a moving boundary

is nonlinear (18],

Consider the one-dimensional equatior

2. p3f _ 23
ox ¥ ox

oy ¢

where

£(x,0) = glx) , R,<x <Ry

of -

ox 0

x=R x = R
j
or £(Ri,t)= 0
£(R(t),8)= h(t) x = R(t),

Let us introduce the transformation

o ORY
= R(t) - R' °

Then
2. ( .a.;> LB, lexi 4R(H)
where
=31-

(A-1)
t=0
t>0
t>0
(A-2)
2L 0<x' <1,
xi
t >0,
(4-3)

Ry
’ }-
o
S
I

i f;x;;;;§=A-




™25 -32-
£(x,0) = glx") 0SxS, t =0
3
-§£> = OW
xial X
or x! =0 t>o0
£(1, 0) = ©
£(R{t),t) = h(t) =t =0 t > 0.

This equation is nonlinear unless R(t) 1s constant. There-
fore, in studying the pulsations and growth of gzas bubbles we
consider a spherical bubble immersed in an infinite liquid.
This bubble is in the path of a longitudinal sound wave.

In solving equations of the parabolic tyne we find it conven-
ient in many instances to assume that the radius of the bubble
is momentarily fixed. Later, we can intioduce aprroximations
~ for the variations of bubble radius with time, namely, R(t).

- T - ) . T - .
e e it A ————— A
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